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4
COMPLEX DYNAMICAL

SYSTEMS AND EMBODIMENT

Michael J. Richardson and Anthony Chemero

Although dynamical systems have been used by cognitive scientists for more than a decade
already (e.g. Kugler, Kelso, and Turvey, 1980), dynamical systems first gained widespread attention
in the mid-1990s (e.g. Kelso, 1995; Port and van Gelder, 1995; Thelen and Smith, 1994).
Dynamical systems theory was then, and continues to be, a crucial tool for embodied cognitive
science. The word dynamical simply means “changing over time” and thus a dynamical system is
simply a system whose behavior evolves or changes over time. The scientific study of dynamical
systems is concerned with understanding, modeling, and predicting the ways in which the behavior
of a system changes over time. In the last few decades, thanks to increasing computational power,
researchers have begun to investigate and understand the dynamic behavior of complex biolo-
gical, cognitive, and social systems, using the concepts and tools of non-linear dynamical systems.
In the next section, we will describe the key concepts of modern dynamical systems theory
(complexity, self-organization, soft assembly, interaction dominance, and non-linearity). In the
second section, we briefly discuss some dynamical analysis techniques used in the cognitive sciences.
In the third, we give some examples of the application of complex dynamical systems theory and
analysis in cognitive science. In the last, we sketch some consequences of the widespread
applicability of dynamical approaches to understanding neural, cognitive, and social systems.

Complex dynamical systems

Complex dynamical systems exhibit three key characteristics (Gallagher and Appenzeller, 1999).
First, they consist of a number of interacting components or agents. These components can be
homogeneous or heterogeneous. A collection of cortical areas or simple artificial agents can
comprise a homogeneous, complex dynamical system; a brain in a body in an environment can
comprise a heterogeneous, complex dynamical system. A second property is that these systems
exhibit emergent behavior in that their collective behavior exhibits a coherent pattern that could
not be predicted from the behavior of the components separately. Third, and most importantly,
this emergent behavior is self-organized in that it does not result from a controlling component
agent. These three characteristics can be seen clearly in phenomena such as bird flocking. Star-
lings, for example, gather in flocks of hundreds to thousands known as “murmurations.” Starling
murmurations exhibit striking, globally unified behavior, in which large numbers of starlings
move as a single, dark blob that changes shape as it moves across the sky. Murmurations are a
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coordination phenomenon in which interactions between individuals produce collective, large-
scale patterns. Starling murmurations, and bird flocks more generally, exhibit all the key features
of complex dynamical systems and have been modeled as such (Cavagna et al., 2010).

Self-organization

The term “self-organization” is used to refer to behavioral patterns that emerge from the
interactions that bind the components of a system into a collective system, without a centralized
controller. A murmuration’s behavior is emergent and self-organized: murmurations form when
sufficient numbers of starlings gather, without a head starling leading the way. In fact, in order to
model the velocity of individual birds in a murmuration, Cavagna et al. (2010) start with the
velocity of the murmuration as a whole, and work inward from there to model the velocities of
individual birds. Starling flocking highlights how coordinated social behavior can result spon-
taneously from the interactions of agents. Coordinated, collective behavior among herds of
mammals and schools of fish is self-organized in the same way, as is the nest-building behavior of
ants, bees, and termites. In each of these cases, no individual animal or subset of the whole
controls the behavior of the group (Camazine et al., 2001).

Soft-assembly

Murmurations are temporary coalitions of starlings that are put together in a fluid and flexible
manner. It doesn’t matter which particular bird ends up in which position in the flock, and each
bird will take up many different positions as the flock moves and takes shape. The behavior of the
birds that are the components in the flock is context dependent. Dynamical systems that exhibit
this kind of emergent, context-dependent behavior are often referred to as softly assembled systems,
in that the behavioral system reflects a temporary coalition of coordinated entities, components,
or factors. The term synergy is sometimes used to refer to softly assembled systems—a functional
grouping of structural elements that are temporarily constrained to act as a single coherent unit
(Kelso, 2009). In contrast, most non-biological systems or machines are hard-molded systems. A
laptop computer, for example, is a hard-molded system, in that it is composed of a series of
components, each of which plays a specific, predetermined role in the laptop’s behavior.
Coordinated behavior in social animals, including humans, is often softly assembled.

Interaction-dominant dynamics

Softly assembled systems exhibit interaction-dominant dynamics, as opposed to component-
dominant dynamics. For component-dominant dynamical systems, system behavior is the pro-
duct of a rigidly delineated architecture of system modules, component elements or agents, each
with predetermined functions. For softly assembled, interaction-dominant dynamical systems,
system behavior is the result of interactions between system components, agents, and situational
factors, with these intercomponent or interagent interactions altering the dynamics of the
component elements, situational factors and agents themselves (Anderson, Richardson, and
Chemero, 2012; Van Orden, Kloos and Wallot, 2011). As noted above, to model the behavior of
individual starlings in a murmuration, Cavagna et al. (2010) began with the behavior of the flock
as a whole. Within the murmuration, the behavior of any bird is primarily determined by the
behavior of the whole murmuration, even though the murmuration is nothing other than the
collection of individual birds. If one were to examine the relationship between any two levels of
an interaction-dominant dynamical system, one would observe that elements or agents at the
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lower level of the system modulate the macroscopic order of the higher level, and at the same
time are structured by the macroscopic order of the system. For interaction-dominant systems, it
is difficult, and often impossible, to assign precise causal roles to particular components. It is also
difficult, and often impossible, to predict the behavior of components within interaction-dominant
systems from their behavior in isolation.

Non-linearity

A non-linear system is one in which the system’s output is not directly proportional to the input,
as opposed to a linear system in which the output can be simply represented as a weighted sum of
input components. Complex dynamical systems are non-linear in this sense, so their behavior is
never merely the sum of the behavior of the components (Van Orden, Holden, and Turvey,
2003). Non-linearity cuts two ways. On one hand, the non-linearity of complex dynamical
systems makes them much more difficult to understand. In fact, non-linear systems are non-
decomposable, in that you cannot isolate components of the system and predict their behavior.
On the other hand, it is only because complex dynamical systems are non-linear that they can
exhibit complex behavior.

Dynamical analysis

Central to identifying the casual structures or processes that underlie and shape the physical and
cognitive behavior of complex biological agents is time-series analysis. Substantial advances in
the types of non-linear analysis techniques that have occurred in recent years, combined with the
increasing availability of these techniques (i.e. via open source software packages and code
sharing), has further compounded their importance. In fact, it is becoming increasingly clear that
non-linear time-series analysis is essential for understanding how the ordered regularity of human
behavior and cognition can emerge and be maintained. The advantage of these methods over the
traditional statistical techniques commonly employed in cognitive psychology is that they can
handle the time dependence of behavior and are not restricted to making linear assumptions
about behavioral organization. Indeed, contemporary methods of non-linear dynamics embrace
the complexity of self-organized behavior and, accordingly, can provide deep insights about the
behavior of real-world time-evolving processes. Here we discuss two methods of non-linear
time-series analysis that have had a transformative impact on our ability to classify and understand
a wide range of embodied cognition, namely recurrence analysis and fractal analysis.

Recurrence analysis

Recurrence analysis is a phase-space method that allows one to determine the dynamical structure
of a recorded time series, no matter how complex the time series is, nor the number of state
dimensions needed to capture the time-series within its corresponding state space. The beauty of
recurrence analysis, in comparison to other time-series methods, is that it does not require one
to make any assumptions about the structure of the time series being investigated: it can be
stationary, non-stationary periodic, stochastic, discrete, or categorical.

Essentially, recurrence analysis identifies the dynamics of a system by discerning (a) whether
the states of system behavior recur over time and, if states do recur, (b) the deterministic reg-
ularity of the patterning of recurrences. Conceptually, performing recurrence analysis on behavioral
data is relatively easy to understand; one simply plots whether recorded points, states, or events
in a time series are revisited or reoccur over time on a two-dimensional plot, called a recurrence

Complex dynamical systems and embodiment

41



Template: Royal A, Font: ,
Date: 07/02/2014; 3B2 version: 9.1.406/W Unicode (May 24 2007) (APS_OT)
Dir: //integrafs1/kcg/2-Pagination/TandF/DIED_RAPS/ApplicationFiles/9780415623612.3d

plot. This plot provides a visualization of the patterns of revisitations in a system’s behavioral state
space and can be quantified in various ways in order to identify the structure of the dynamics
that exist (see Marwan, 2008 for details). The plots in Figure 4.1 are examples of what recurrence
plots look like for a categorical (left plot) and continuous (right plot) behavioral time series.

Recurrence analysis can also be extended to uncover the dynamic similarity and coordinated
structure that exists between two different behavioral time series. This latter form of recurrence
analysis is termed cross-recurrence analysis and is performed in much the same way as standard
(auto-)recurrence analysis. The key difference is that recurrent points in cross-recurrence correspond
to states or events in two time series that are recurrent with each other. Cross-recurrence analysis
can therefore be employed to quantify the co-occurring dynamics of two behavioral time series.

Fractal analysis

Researchers in cognitive and behavioral psychology commonly collapse repeated measurements
into summary variables, such as the mean and standard deviation, under the assumption that the
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Figure 4.1 Categorical and continuous recurrence analysis. (Left top) The full time series of words extracted
from the lyrics of “Hello, Goodbye” by the Beatles. The y-axis represents the numeric identifier
to which a word is assigned, and the x-axis represents word-by-word unfolding of this “lexical”
time series. (Left bottom) A recurrence plot of the first 20 words in the lyrics. Each point on the
plot represent a relative point (i,j) in the lyrics at which a word is recurring (see e.g. Dale and
Spivey, 2005, 2006). (Right top) The anterior-posterior postural sway movements of single
individual standing and listening to another person speak for 30 seconds. (Right bottom) A
recurrence plot of the first 10 seconds of postural data. Despite the non-periodic nature of the
postural movement, the recurrence plot reveals deterministic structure. (Adapted from Richard-
son et al., in press.)
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measured data contain uncorrelated variance that is normally distributed. Real-time behavior and
cognition, however, are rarely static and thus summary statistics often reveal little about how a
system evolves over time. Indeed, time-series recordings of human performance and cognition
typically contain various levels of correlated variance or non-random fluctuations that are not
normally distributed (Stephen and Mirman, 2010) and, moreover, are structured in a fractal or self-
similar manner (Gilden, 2001, 2009; Van Orden et al., 2003; Van Orden et al., 2011). Indexing
the correlated and self-similar variance within a behavioral time series requires the use of fractal
methods of analysis, sometimes called fractal statistics.

A fractal or self-similar pattern is simply a pattern that is composed of nested copies of itself
and looks similar at different scales of observation. A fractal time series is therefore a time series
that contains nested patterns of variability (Figure 4.2). That is, the patterns of fluctuation over
time look similar at different scales of magnification. The time series displayed in Figure 4.2 is a
good example, with the self-similarity of its temporal fluctuations revealed by zooming in on
smaller and smaller sections. At each level of magnification the temporal pattern looks similar
(Holden, 2005).

A fractal time series is characterized by an inverse proportional relationship between the
power (P) and frequency (f) of observed variation. That is, for a fractal time series there exists a
proportional relationship between the size of a change and how frequently changes of that size
occur, with this relationship remaining stable across changes in scale. It is in this sense that the
pattern of variability in a repeatedly measured behavior is self-similar; large-scale changes occur
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Figure 4.2 Example geometric and temporal fractal patterns (i.e. contain self-similar structure at different
magnitudes of observation). (Left) Koch Snowflake at three levels of magnification. (Right)
Fractal time series at three levels of magnification. (Adapted from Holden, 2005.)
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with the same relative frequency as small-scale changes. The degree to which a data set
approximates this ideal relationship between power and frequency, P = 1/fα, is summarized in
the scaling exponent, α. If one plots the power of the different spectral frequencies that make
up a time series on double-logarithmic axes, α is equivalent to the slope of the line that best
fits the data (Figure 4.3). That is, α captures the relationship between size and frequency of
fluctuations in the time series of behavior. Random fluctuations (i.e. white noise) produce a flat
line in a log-log spectral plot with a slope close to 0, which indicates that changes of all different
sizes occur with approximately the same frequency. Alternatively, fractal fluctuations, often
referred to as pink or 1/f noise, produce a line in a log-log spectral plot that has a slope closer
to -1, which indicates the scale-invariant scaling relationship characteristic of fractal patterns.

The import of determining whether a behavioral time series contains fractal or 1/f variability
is highlighted by a growing body of research demonstrating that the most human behaviors
exhibit fractal structure. For example, numerous studies have demonstrated how the fluctuations
in time series of ongoing stimulus-response activity, time estimation, cognitive performance,
postural control, and eye movements exhibited fractal structure (see Delignières et al., 2006;
Gilden, 2009; Holden, 2005). Even the flow of social interaction and behavior has a fractal
structure (e.g. Delignières, Fortes, and Ninot, 2004; Newtson, 1994). Of particular relevance for
the current discussion, however, is that this research has also demonstrated that the degree to
which fluctuations within a behavioral time series are fractal (i.e. pink) or not (i.e. white), can
provide evidence about whether a behavior is non-linear and the result of interaction-dominant
dynamics (Van Orden et al., 2003).

Complex, dynamical cognitive systems

The above analysis techniques have been applied widely at all spatial scales relevant to cognitive
science, from brain areas, to embodied behavior, to agent-environment systems, and to social
interaction. Although recurrence analysis is still relatively new, there is now substantial evidence

Figure 4.3 Examples of time series composed of random variation (left) and fractal variation (right) and the
associated log-log spectral plots.
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to suggest that it is potentially one of the most generally applicable methods for assessing the
dynamics of biological and human behavior (e.g. Marwan and Meinke, 2002; Zbilut, Thomasson,
and Webber, 2002). This is due to the fact that recurrence analysis provides researchers with a
way of determining whether the nested fluctuations and complex time-evolving patterns within
almost any type of behavioral time series are deterministic and interrelated or stochastic and
disconnected (i.e. the degree a behavioral structure is the result of interaction-dominant
dynamics). For instance, auto- and cross-recurrence analysis has already been employed to
uncover the non-obvious changes that goal constraints produce on the synergistic dynamics of
postural movements (Riley, Balasubramaniam, and Turvey, 1999), the noise structure of limb
movements (e.g. Pellecchia, Shockley, and Turvey, 2005; Richardson, Schmidt, and Kay 2007,
2007) the intermitted perceptual-motor synchrony that occurs between people interacting
(Richardson and Dale, 2005; Richardson, Marsh, and Schmidt, 2005; Richardson, Marsh,
Isenhower, Goodman, and Schmidt, 2007; Shockley, Santana, and Fowler, 2003; Shockley,
Baker, Richardson, and Fowler, 2007), the deterministic structure inherent in eye movements
and stimulus-response reaction-time data (e.g. Cherubini, Nüssli, and Dillenbourg, 2010; Pannasch,
Helmert, Müller, and Velichkovsky, 2012), even semantic similarity during conversation (Angus,
Smith, and Wiles, 2011) and the vocal dynamics of children during development (Warlaumont
et al., 2010). In each case, recurrence analysis was able to reveal whether the observed dynamics
were the result of nested physical, neural, and informational couplings that bound cognition
and action to each other and to the relevant objects (individuals) and events within the task
environment.

As noted above, the presence of 1/f scaling and complex patterns of recurrent structure in a
cognitive and behavioral phenomenon is evidence that the softly assembled system is interaction
dominant. Complex patterns of recurrent behavior and 1/f scaling has been observed in the
brain, and in a wide variety of cognitive and behavioral tasks, from tapping, to key pressing, to
word naming, and many others (Van Orden et al., 2011). This indicates that softly assembled
coalitions of components encompassing portions of the participants’ brain and body were
responsible for the performance of the experimental task. That the portions of the cognitive sys-
tem that engage in tasks such as these are not fully encapsulated in the brain is perhaps not
surprising, since each has a strong motor component. But we also see time-evolving recurrent
structures and 1/f scaling in “purely cognitive” phenomena. In one example, Stephen, Dixon,
and Isenhower, (2009) have shown that problem-solving inference is accomplished by an
interaction-dominant system. Using fractal statistics and recurrence analysis, they found that
learning a new strategy for solving a problem coincides with changes in the complexity and
amount of recurrent activity in an individual’s eye movements. This indicates that even leaps of
insight do not occur in the brain alone – the eye movements are part of the interaction-
dominant system that realizes the cognitive act. Findings such as this impact not only the extent
of the biological resources required for cognitive faculties, but also the separation of cognitive
faculties from one another. Finding that moving eyes are components of the interaction-dominant
system that has the problem-solving insight makes it more difficult to separate cognition from
motor control.

There is reason to think that this expansion of the cognitive system does not stop at the
boundaries of the biological body. For example, Dotov, Nie, and Chemero (2010) describe
experiments designed to induce and then temporarily disrupt an extended cognitive system.
Participants in these experiments play a simple video game, controlling an object on a monitor
using a mouse. At some point during the 1-minute trial, the connection between the mouse
and the object it controls is disrupted temporarily before returning to normal. Dotov et al.
found 1/f scaling at the hand-mouse interface while the mouse was operating normally, but not
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during the disruption. As discussed above, this indicates that, during normal operation, the
computer mouse is part of the smoothly functioning interaction-dominant system engaged in
the task; during the mouse perturbation, however, the 1/f scaling at the hand-mouse interface
disappears temporarily, indicating that the mouse is no longer part of the extended interaction-
dominant system. These experiments were designed to detect, and did in fact detect, the pre-
sence of an extended cognitive system, an interaction-dominant system that included both
biological and non-biological parts. The fact that such a mundane experimental set-up (using a
computer mouse to control an object on a monitor) generated an extended cognitive system
suggests that extended cognitive systems are quite common. These, of course, are not the only
examples of interaction dominance in cognition (for a review, see Van Orden et al., 2011).

The phenomena of 1/f scaling and recurrent dynamics are ubiquitous in the brain as well.
Heterogeneous coupling and multiscale dynamics are widespread features of the brain. Brain
connectivity is organized on a hierarchy of scales ranging from local circuits of neurons to
functional topological networks. At each scale the relevant neural dynamics are determined not
just by processes at that scale, but by processes at other smaller and larger scales as well. Such
multilevel clustered architectures promote varied and stable dynamic patterns via criticality and
other dynamical and topological features. There is therefore also growing evidence that neural
circuits are interaction dominant. Several recent studies have found evidence of 1/f scaling in
human neural activity (e.g. Freeman, Rogers, Holmes, and Silbergeld, 2000; Bullmore et al., 2001;
Freeman, 2009). Research on the dynamics of brain activity using recurrence analysis has also
produced evidence that the dynamic behavior of the brain is characteristic of an interaction-
dominant system. For example, Acharya and colleagues have employed recurrence analysis to
uncover the non-linear and interaction-dominant dynamics of EEG singles during various sleep cycles
and for individuals with epilepsy (e.g. Acharya, Faust, Kannathal, Chua, and Laxminarayan, 2005).

Finally, the dynamics of many social behaviors are interaction dominant and characterized by
complex recurrent patterns and 1/f scaling. For instance, Shockley et al. (2003) employed cross-
recurrence analysis to examine the postural dynamics of two co-present participants completing
a conversational task together. The experiment included two key manipulations. The first
manipulation was whether the two participants were performing the task together, or whether
the participants were co-present but performed the task with a confederate. The second
manipulation was whether the participants were positioned facing each other or back to back.
The analysis revealed that the postural activity of the two participants was more similar when
performing the puzzle task together (i.e. conversing with each other) compared to when per-
forming the task with the confederate. Surprisingly, the interpersonal postural dynamics was not
influenced by vision, in that the same magnitude of recurrent activity was observed irrespective
of whether the participants could see each other or not. Thus, the findings not only demon-
strated how an individual’s postural dynamics are spontaneously influenced by interactions with
other conspecifics, but also how conversation alone can couple the behavioral dynamics of
interacting individuals.

The fact that the physical and informational interactions that characterize social interaction
operate to shape behavior (often spontaneously and without awareness) means that the beha-
vioral dynamics of social activity is inherently interaction dominant. In addition to the postural
work of Shockley et al. (2003), other studies investigating various forms of social movement
coordination have produced findings that demonstrated that the dynamics of social behavior is
interaction dominant (see Riley, Richardson, Shockley, and Ramenzoni, 2011; Richardson,
Marsh, and Schmidt, 2010; Schmidt and Richardson, 2008). The implication is that co-acting
individuals form a synergy, whereby the behavioral order of the individuals involved is enslaved
by the functional order of the group or team as a whole. Accordingly, the behavioral
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performance of interacting individuals is not simply an additive function of each individual’s
cognitive or behavioral capabilities and, moreover, cannot be understood by studying the indi-
viduals in isolation from each other or the social setting. Ramenzoni (2008) highlighted this
point, using cross-recurrence analysis to demonstrate how the informational interaction that
occurs during joint action results in the dimensional compression of each individuals behavioral
degrees of freedom and the formation of a low-dimensional reciprocally compensating synergy.
Similar findings have been made by Richardson, Dale, and colleagues in studies investigating
social eye coordination and language comprehension (Richardson, Dale, and Tomlinson, 2009).
Using categorical cross-recurrence analysis, they have demonstrated across several studies that a
shared task context results in synergistic eye movements and that the coordinated stability of
such eye movements reflects how well two people comprehend each other (Richardson and
Dale, 2005), the strength of their shared knowledge and how much two people converge in
language use (Richardson, Dale, and Spivey, 2007).

With respect to 1/f scaling and the fractal nature of social behavior, Delignières et al. (2004)
have demonstrated that fractal processes underlie the dynamics of self-esteem and physical self.
Twice a day, for 512 consecutive days, they collected data about the global self-esteem of four
individuals. Consistent with a conception of self-perception as an emergent product of an
interaction-dominant dynamical system, an analysis of the resulting time series found conver-
ging evidence of 1/f scaling in the behavioral series. At a more local level, Malone and collea-
gues (Malone, Castillo, Holden, Kloos, and Richardson, 2013) recently employed a social
Simon stimulus-response compatibility task to demonstrate how the mere presence of another
actor constrains the fractal variability of an individual’s response behavior. The results revealed
how the presence of another actor alters a task setting and, as such, the ongoing dynamics of
individual behavior (even if the co-present individual is engaged in an independent task). Eiler,
Kallen, Harrison, and Richardson (2013) have uncovered preliminary evidence that social
stereotypes and gender salience can influence the fractal structure of an individual’s cognitive
and behavioral performance. Perhaps most compelling is the work by Correll (2008), which has
shown that participants who are trying to avoid racial bias show decreased fractal signature in
their response latencies in a video game. In light of characterizing social perception and other
processes as a system of many intertwined dependencies—as processes of an interaction-dominant
dynamical system—these findings suggest that the behavioral fluctuations of socially situated
performance reflects the distributed influence of positive and negative perceptions and judgments,
and the cultural regulations that define them.

Consequences

The complexity and unpredictability of human behavior has led many cognitive scientists to
attempt to understand cognitive systems as complex dynamical systems, and to approach them
using complex dynamical analysis. The result of this has been the widespread recognition of
interaction-dominant dynamics in the brain and in individual and social cognition. This
recognition has consequences both for the nature of cognition and for the practice of cognitive
science. Here we focus on consequences concerning modularity and extended cognition. (See
Chemero, in press.)

Modularity

An interaction-dominant system is a highly interconnected system, each of whose components alters
the dynamics of many of the others to such an extent that the effects of the interactions are more
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powerful than the intrinsic dynamics of the components. In an interaction-dominant system,
inherent variability (i.e. fluctuations or noise) of any individual component propagates through
the system as a whole, altering the dynamics of the other components. In interaction-dominant
systems one cannot treat the components of the system in isolation: because of the widespread
feedback in interaction-dominant systems, one cannot isolate components to determine exactly
what their contribution is to particular behavior. And because the effects of interactions are more
powerful than the intrinsic dynamics of the components, the behavior of the components in any
particular interaction-dominant system is not predictable from their behavior in isolation or from
their behavior in some other interaction-dominant system. Interaction-dominant systems, in
other words, are not modular. They are in a deep way unified in that the responsibility for system
behavior is distributed across all of the components. Given the rapid pace at which cognitive
systems have been shown to be interaction dominant in the twenty-first century, there is good
reason to think that cognitive systems are not, in general, modular (Anderson et al., 2012;
Chemero, in press).

Extended cognition

We have seen that not just neural and brain-body systems are interaction dominant; so too are
human-tool cognitive systems and social cognitive systems. Because interaction-dominant sys-
tems are unified, we should identify the cognitive systems in these cases with human-tool and
social systems as a whole. That is, the cognitive system in question is not encapsulated within an
individual brain or even an individual body. This supports the hypothesis of extended cognition.
According to the hypothesis of extended cognition, cognitive systems sometimes include portions
of the non-bodily environment (Clark and Chalmers, 1998; Chemero 2009). When human-tool
or social cognitive systems are complex dynamical systems with interaction-dominant dynamics,
they are extended cognitive systems. Moreover, these studies support extended cognition
empirically, and not with a priori philosophical argumentation.
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